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Figure 1 – Simple Imbalance Mass Model
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The reaction wheel force and torque disturbance model developed by JPL [1] is an adequate
model only for reaction wheels maintained at constant speed. For the purpose of simulation and
evaluation of NGST integrated system performance, a more general reaction wheel disturbance
model is required. In this memo, a simple formulation of the reaction wheel imbalance is
described and used in justifying the two proposed extensions to the current model to allow
handling of an arbitrary wheel speed profile.

Consider a simplified model of a reaction wheel that has a single lumped mass imbalance m
located at ro in the wheel frame whose origin is at the wheel axis, as depicted in the Figure 1.
This model is used to explain forces measured in the rotor plane, commonly referred to as
“static imbalance” [2]. A slightly different representation is used to explain torques measured in
the rotor plane, or “dynamic imbalance”.

The motion of this lumped mass follows that of the reaction wheel, and can simply be expressed
in a fixed frame as:

( ) ( )( )r
d t r t i t jo( ) cos ( ) $ sin ( ) $= +θ θ

where θ(t) represents the rotational angle along the reaction wheel spin axis, assumed here to
be the z-axis of the fixed frame.
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 This expression can be given in matrix notation as:

d R t ro= ( )

where R(t) is the transformation matrix to the fixed frame from the reaction wheel frame which
moves with the reaction wheel rotation, and ro the column vector. Taking the first and second
derivatives of this expression yields:
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where the squared bracket denotes the cross product operator matrix, i.e. [a]b=a×b.

The tangential component of the imbalance force is therefore:

F mdt = &&

For a constant reaction wheel speed, i.e. &&θ = 0, the above equation when expressed explicitly in
vector form reduces to:

[] ( ) ( )( )F m R t r r t i t jt o o= = − +& ( ) & cos ( ) $ sin ( ) $θ θ θ θ
2 2

By following a similar approach, other disturbance components (radial force, in-plane torques)
can be derived, and can be shown to have the same functional form as the tangential component
of the imbalance force, and differ only by some constant factors.

In the JPL model, the force and torque are given in terms of discrete harmonics of the reaction
speed, frwa  (expressed in Hz), and are described by the following expression:

( )m t C f f ti
i

n

rwa rwa i( ) = +∑ 2 sin 2 hiπ φ (equation A)

where m(t) represents some arbitrary component of either disturbance torque or force, and Ci ,

hi , and φi , (i=1..n), are amplitude coefficients, harmonic numbers, and random phases to be
extracted from test measurements. In this form, the tangential component of the imbalance force
derived above for a lumped mass essentially agrees with the model for the constant speed case.
This is true because in this case:

θ θ τ τ π( ) &( )t d f t
t

rwa= =∫ 2
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However, when the reaction speed is changing the model must be modified not only to take
into account the acceleration term but also to include the more general computation of the
rotational angle, i.e. as integration of the reaction wheel speed instead of the product of it and
time.

The proposed changes result in the following model of the force and torque disturbance with
frwa now being a time-dependent function:

m(t) C f (t) h f (t )dt f (t) h f (t )dti rwa i rwa
' '

t

i rwa i rwa
' '

t

i
i

n

= +








− +





















∫ ∫∑ 2 2 2sin & cosπ φ π φ (equation B)

Equations A and B were implemented in a simple SimulinkTM system, shown in Figure 2, and
then simulated. Figure 3  is a plot of a continuous version of a step-down rate profile. It is
representative of typical wheel speed profiles encountered at the end of fixed-rate slews, and is
used to drive the simulation. Equations (A) and (B) are implemented using a simplified
harmonic model (a single harmonic with coefficients C0=1, h0=1, φ0=0). The resulting
normalized forces are shown in Figures 4 and 5, respectively.
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Figure 2 – SimulinkTM Block Diagram
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Figure 3 – Wheel Rate Profile
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Figure 4 – incorrect force modeled using Eqn A
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Figure 5 – correct force modeled using Eqn B


